
Java - Overview

Java programming language was originally developed by Sun Microsystems which was initiated by

James Gosling and released in 1995 as core component of Sun Microsystems' Java platform (Java

1.0 [J2SE]).

The latest release of the Java Standard Edition is Java SE 8. With the advancement of Java and its

widespread popularity, multiple configurations were built to suit various types of platforms. For

example: J2EE for Enterprise Applications, J2ME for Mobile Applications.

The new J2 versions were renamed as Java SE, Java EE, and Java ME respectively. Java is

guaranteed to be Write Once, Run Anywhere.

Java is −

 Object Oriented − In Java, everything is an Object. Java can be easily extended since it is

based on the Object model.

 Platform Independent − Unlike many other programming languages including C and C++,

when Java is compiled, it is not compiled into platform specific machine, rather into

platform independent byte code. This byte code is distributed over the web and interpreted

by the Virtual Machine (JVM) on whichever platform it is being run on.

 Simple − Java is designed to be easy to learn. If you understand the basic concept of OOP

Java, it would be easy to master.

 Secure − With Java's secure feature it enables to develop virus-free, tamper-free systems.

Authentication techniques are based on public-key encryption.

 Architecture-neutral − Java compiler generates an architecture-neutral object file format,

which makes the compiled code executable on many processors, with the presence of Java

runtime system.

 Portable − Being architecture-neutral and having no implementation dependent aspects of

the specification makes Java portable. Compiler in Java is written in ANSI C with a clean

portability boundary, which is a POSIX subset.

 Robust − Java makes an effort to eliminate error prone situations by emphasizing mainly on

compile time error checking and runtime checking.

 Multithreaded − With Java's multithreaded feature it is possible to write programs that can

perform many tasks simultaneously. This design feature allows the developers to construct

interactive applications that can run smoothly.

 Interpreted − Java byte code is translated on the fly to native machine instructions and is

not stored anywhere. The development process is more rapid and analytical since the linking

is an incremental and light-weight process.

 High Performance − With the use of Just-In-Time compilers, Java enables high

performance.

 Distributed − Java is designed for the distributed environment of the internet.

 Dynamic − Java is considered to be more dynamic than C or C++ since it is designed to

adapt to an evolving environment. Java programs can carry extensive amount of run-time

information that can be used to verify and resolve accesses to objects on run-time.

History of Java

James Gosling initiated Java language project in June 1991 for use in one of his many set-top box

projects. The language, initially called ‘Oak’ after an oak tree that stood outside Gosling's office,

also went by the name ‘Green’ and ended up later being renamed as Java, from a list of random

words.

Sun released the first public implementation as Java 1.0 in 1995. It promised Write Once, Run

Anywhere (WORA), providing no-cost run-times on popular platforms.

On 13 November, 2006, Sun released much of Java as free and open source software under the

terms of the GNU General Public License (GPL).

On 8 May, 2007, Sun finished the process, making all of Java's core code free and open-source,

aside from a small portion of code to which Sun did not hold the copyright.

Tools You Will Need

For performing the examples discussed in this tutorial, you will need a Pentium 200-MHz computer

with a minimum of 64 MB of RAM (128 MB of RAM recommended).

You will also need the following softwares −

 Linux 7.1 or Windows xp/7/8 operating system

 Java JDK 8

 Microsoft Notepad or any other text editor

This tutorial will provide the necessary skills to create GUI, networking, and web applications

using Java.

Try It Option

We have provided you with an option to compile and execute available code online. Just click

the Try it button avaiable at the top-right corner of the code window to compile and execute the

available code. There are certain examples which cannot be executed online, so we have skipped

those examples.

public class MyFirstJavaProgram {

 public static void main(String []args) {

 System.out.println("Hello World");

 }

}

There may be a case that you do not see the result of the compiled/executed code. In such case, you

can re-try to compile and execute the code using executebutton available in the compilation pop-up

window.

What is Next?

The next chapter will guide you to how you can obtain Java and its documentation. Finally, it

instructs you on how to install Java and prepare an environment to develop Java applications.

Java - Environment Setup

In this chapter, we will discuss on the different aspects of setting up a congenial environment for

Java.

Try it Option Online

We have set up the Java Programming environment online, so that you can compile and execute all

the available examples online. It gives you confidence in what you are reading and enables you to

verify the programs with different options. Feel free to modify any example and execute it online.

Try the following example using our online compiler available at CodingGround

public class MyFirstJavaProgram {

 public static void main(String []args) {

 System.out.println("Hello World");

 }

}

For most of the examples given in this tutorial, you will find a Try it option in our website code

sections at the top right corner that will take you to the online compiler. So just make use of it and

enjoy your learning.

Local Environment Setup

If you are still willing to set up your environment for Java programming language, then this section

guides you on how to download and set up Java on your machine. Following are the steps to set up

the environment.

Java SE is freely available from the link Download Java. You can download a version based on

your operating system.

Follow the instructions to download Java and run the .exe to install Java on your machine. Once

you installed Java on your machine, you will need to set environment variables to point to correct

installation directories −

Setting Up the Path for Windows

Assuming you have installed Java in c:\Program Files\java\jdk directory −

 Right-click on 'My Computer' and select 'Properties'.

https://www.tutorialspoint.com/codingground.htm
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

 Click the 'Environment variables' button under the 'Advanced' tab.

 Now, alter the 'Path' variable so that it also contains the path to the Java executable.

Example, if the path is currently set to 'C:\WINDOWS\SYSTEM32', then change your path

to read 'C:\WINDOWS\SYSTEM32;c:\Program Files\java\jdk\bin'.

Setting Up the Path for Linux, UNIX, Solaris, FreeBSD

Environment variable PATH should be set to point to where the Java binaries have been installed.

Refer to your shell documentation, if you have trouble doing this.

Example, if you use bash as your shell, then you would add the following line to the end of your

'.bashrc: export PATH = /path/to/java:$PATH'

Popular Java Editors

To write your Java programs, you will need a text editor. There are even more sophisticated IDEs

available in the market. But for now, you can consider one of the following −

 Notepad − On Windows machine, you can use any simple text editor like Notepad

(Recommended for this tutorial), TextPad.

 Netbeans − A Java IDE that is open-source and free which can be downloaded

from https://www.netbeans.org/index.html.

 Eclipse − A Java IDE developed by the eclipse open-source community and can be

downloaded from https://www.eclipse.org/.

What is Next?

Next chapter will teach you how to write and run your first Java program and some of the important

basic syntaxes in Java needed for developing applications.

Java - Basic Syntax

When we consider a Java program, it can be defined as a collection of objects that communicate via

invoking each other's methods. Let us now briefly look into what do class, object, methods, and

instance variables mean.

 Object − Objects have states and behaviors. Example: A dog has states - color, name, breed

as well as behavior such as wagging their tail, barking, eating. An object is an instance of a

class.

 Class − A class can be defined as a template/blueprint that describes the behavior/state that

the object of its type supports.

 Methods − A method is basically a behavior. A class can contain many methods. It is in

methods where the logics are written, data is manipulated and all the actions are executed.

 Instance Variables − Each object has its unique set of instance variables. An object's state is

created by the values assigned to these instance variables.

https://www.netbeans.org/index.html
https://www.eclipse.org/

First Java Program

Let us look at a simple code that will print the words Hello World.

Example

public class MyFirstJavaProgram {

 /* This is my first java program.

 * This will print 'Hello World' as the output

 */

 public static void main(String []args) {

 System.out.println("Hello World"); // prints Hello World

 }

}

Let's look at how to save the file, compile, and run the program. Please follow the subsequent steps

−

 Open notepad and add the code as above.

 Save the file as: MyFirstJavaProgram.java.

 Open a command prompt window and go to the directory where you saved the class. Assume

it's C:\.

 Type 'javac MyFirstJavaProgram.java' and press enter to compile your code. If there are no

errors in your code, the command prompt will take you to the next line (Assumption : The

path variable is set).

 Now, type ' java MyFirstJavaProgram ' to run your program.

 You will be able to see ' Hello World ' printed on the window.

Output

C:\> javac MyFirstJavaProgram.java

C:\> java MyFirstJavaProgram

Hello World

Basic Syntax

About Java programs, it is very important to keep in mind the following points.

 Case Sensitivity − Java is case sensitive, which means identifier Hello and hello would have

different meaning in Java.

 Class Names − For all class names the first letter should be in Upper Case. If several words

are used to form a name of the class, each inner word's first letter should be in Upper Case.

Example: class MyFirstJavaClass

 Method Names − All method names should start with a Lower Case letter. If several words

are used to form the name of the method, then each inner word's first letter should be in

Upper Case.

Example: public void myMethodName()

 Program File Name − Name of the program file should exactly match the class name.

When saving the file, you should save it using the class name (Remember Java is case

sensitive) and append '.java' to the end of the name (if the file name and the class name do

not match, your program will not compile).

Example: Assume 'MyFirstJavaProgram' is the class name. Then the file should be saved

as 'MyFirstJavaProgram.java'

 public static void main(String args[]) − Java program processing starts from the main()

method which is a mandatory part of every Java program.

Java Identifiers

All Java components require names. Names used for classes, variables, and methods are

called identifiers.

In Java, there are several points to remember about identifiers. They are as follows −

 All identifiers should begin with a letter (A to Z or a to z), currency character ($) or an

underscore (_).

 After the first character, identifiers can have any combination of characters.

 A key word cannot be used as an identifier.

 Most importantly, identifiers are case sensitive.

 Examples of legal identifiers: age, $salary, _value, __1_value.

 Examples of illegal identifiers: 123abc, -salary.

Java Modifiers

Like other languages, it is possible to modify classes, methods, etc., by using modifiers. There are

two categories of modifiers −

 Access Modifiers − default, public , protected, private

 Non-access Modifiers − final, abstract, strictfp

We will be looking into more details about modifiers in the next section.

Java Variables

Following are the types of variables in Java −

 Local Variables

 Class Variables (Static Variables)

 Instance Variables (Non-static Variables)

Java Arrays

Arrays are objects that store multiple variables of the same type. However, an array itself is an

object on the heap. We will look into how to declare, construct, and initialize in the upcoming

chapters.

Java Enums

Enums were introduced in Java 5.0. Enums restrict a variable to have one of only a few predefined

values. The values in this enumerated list are called enums.

With the use of enums it is possible to reduce the number of bugs in your code.

For example, if we consider an application for a fresh juice shop, it would be possible to restrict the

glass size to small, medium, and large. This would make sure that it would not allow anyone to

order any size other than small, medium, or large.

Example

class FreshJuice {

 enum FreshJuiceSize{ SMALL, MEDIUM, LARGE }

 FreshJuiceSize size;

}

public class FreshJuiceTest {

 public static void main(String args[]) {

 FreshJuice juice = new FreshJuice();

 juice.size = FreshJuice.FreshJuiceSize.MEDIUM ;

 System.out.println("Size: " + juice.size);

 }

}

The above example will produce the following result −

Output

Size: MEDIUM

Note − Enums can be declared as their own or inside a class. Methods, variables, constructors can

be defined inside enums as well.

Java Keywords

The following list shows the reserved words in Java. These reserved words may not be used as

constant or variable or any other identifier names.

abstract assert boolean break

byte case catch char

class const continue default

do double else enum

extends final finally float

for goto if implements

import instanceof int interface

long native new package

private protected public return

short static strictfp super

switch synchronized this throw

throws transient try void

volatile while

Comments in Java

Java supports single-line and multi-line comments very similar to C and C++. All characters

available inside any comment are ignored by Java compiler.

Example

public class MyFirstJavaProgram {

 /* This is my first java program.

 * This will print 'Hello World' as the output

 * This is an example of multi-line comments.

 */

 public static void main(String []args) {

 // This is an example of single line comment

 /* This is also an example of single line comment. */

 System.out.println("Hello World");

 }

}

Output

Hello World

Using Blank Lines

A line containing only white space, possibly with a comment, is known as a blank line, and Java

totally ignores it.

Inheritance

In Java, classes can be derived from classes. Basically, if you need to create a new class and here is

already a class that has some of the code you require, then it is possible to derive your new class

from the already existing code.

This concept allows you to reuse the fields and methods of the existing class without having to

rewrite the code in a new class. In this scenario, the existing class is called the superclass and the

derived class is called the subclass.

Interfaces

In Java language, an interface can be defined as a contract between objects on how to communicate

with each other. Interfaces play a vital role when it comes to the concept of inheritance.

An interface defines the methods, a deriving class (subclass) should use. But the implementation of

the methods is totally up to the subclass.

What is Next?

The next section explains about Objects and classes in Java programming. At the end of the

session, you will be able to get a clear picture as to what are objects and what are classes in Java.

Java - Object and Classes

Java is an Object-Oriented Language. As a language that has the Object-Oriented feature, Java

supports the following fundamental concepts −

 Polymorphism

 Inheritance

 Encapsulation

 Abstraction

 Classes

 Objects

 Instance

 Method

 Message Parsing

In this chapter, we will look into the concepts - Classes and Objects.

 Object − Objects have states and behaviors. Example: A dog has states - color, name, breed

as well as behaviors – wagging the tail, barking, eating. An object is an instance of a class.

 Class − A class can be defined as a template/blueprint that describes the behavior/state that

the object of its type support.

Objects in Java

Let us now look deep into what are objects. If we consider the real-world, we can find many objects

around us, cars, dogs, humans, etc. All these objects have a state and a behavior.

If we consider a dog, then its state is - name, breed, color, and the behavior is - barking, wagging

the tail, running.

If you compare the software object with a real-world object, they have very similar characteristics.

Software objects also have a state and a behavior. A software object's state is stored in fields and

behavior is shown via methods.

So in software development, methods operate on the internal state of an object and the object-to-

object communication is done via methods.

Classes in Java

A class is a blueprint from which individual objects are created.

Following is a sample of a class.

Example

public class Dog {

 String breed;

 int ageC

 String color;

 void barking() {

 }

 void hungry() {

 }

 void sleeping() {

 }

}

A class can contain any of the following variable types.

 Local variables − Variables defined inside methods, constructors or blocks are called local

variables. The variable will be declared and initialized within the method and the variable

will be destroyed when the method has completed.

 Instance variables − Instance variables are variables within a class but outside any method.

These variables are initialized when the class is instantiated. Instance variables can be

accessed from inside any method, constructor or blocks of that particular class.

 Class variables − Class variables are variables declared within a class, outside any method,

with the static keyword.

A class can have any number of methods to access the value of various kinds of methods. In the

above example, barking(), hungry() and sleeping() are methods.

Following are some of the important topics that need to be discussed when looking into classes of

the Java Language.

Constructors

When discussing about classes, one of the most important sub topic would be constructors. Every

class has a constructor. If we do not explicitly write a constructor for a class, the Java compiler

builds a default constructor for that class.

Each time a new object is created, at least one constructor will be invoked. The main rule of

constructors is that they should have the same name as the class. A class can have more than one

constructor.

Following is an example of a constructor −

Example

public class Puppy {

 public Puppy() {

 }

 public Puppy(String name) {

 // This constructor has one parameter, name.

 }

}

Java also supports Singleton Classes where you would be able to create only one instance of a

class.

Note − We have two different types of constructors. We are going to discuss constructors in detail

in the subsequent chapters.

Creating an Object

As mentioned previously, a class provides the blueprints for objects. So basically, an object is

created from a class. In Java, the new keyword is used to create new objects.

There are three steps when creating an object from a class −

 Declaration − A variable declaration with a variable name with an object type.

 Instantiation − The 'new' keyword is used to create the object.

 Initialization − The 'new' keyword is followed by a call to a constructor. This call initializes

the new object.

Following is an example of creating an object −

Example

public class Puppy {

 public Puppy(String name) {

 // This constructor has one parameter, name.

 System.out.println("Passed Name is :" + name);

 }

http://www.tutorialspoint.com/java/java_using_singleton.htm

 public static void main(String []args) {

 // Following statement would create an object myPuppy

 Puppy myPuppy = new Puppy("tommy");

 }

}

If we compile and run the above program, then it will produce the following result −

Output

Passed Name is :tommy

Accessing Instance Variables and Methods

Instance variables and methods are accessed via created objects. To access an instance variable,

following is the fully qualified path −

/* First create an object */

ObjectReference = new Constructor();

/* Now call a variable as follows */

ObjectReference.variableName;

/* Now you can call a class method as follows */

ObjectReference.MethodName();

Example

This example explains how to access instance variables and methods of a class.

public class Puppy {

 int puppyAge;

 public Puppy(String name) {

 // This constructor has one parameter, name.

 System.out.println("Name chosen is :" + name);

 }

 public void setAge(int age) {

 puppyAge = age;

 }

 public int getAge() {

 System.out.println("Puppy's age is :" + puppyAge);

 return puppyAge;

 }

 public static void main(String []args) {

 /* Object creation */

 Puppy myPuppy = new Puppy("tommy");

 /* Call class method to set puppy's age */

 myPuppy.setAge(2);

 /* Call another class method to get puppy's age */

 myPuppy.getAge();

 /* You can access instance variable as follows as well */

 System.out.println("Variable Value :" + myPuppy.puppyAge);

 }

}

If we compile and run the above program, then it will produce the following result −

Output

Name chosen is :tommy

Puppy's age is :2

Variable Value :2

Source File Declaration Rules

As the last part of this section, let's now look into the source file declaration rules. These rules are

essential when declaring classes, import statements and packagestatements in a source file.

 There can be only one public class per source file.

 A source file can have multiple non-public classes.

 The public class name should be the name of the source file as well which should be

appended by .java at the end. For example: the class name is public class Employee{} then

the source file should be as Employee.java.

 If the class is defined inside a package, then the package statement should be the first

statement in the source file.

 If import statements are present, then they must be written between the package statement

and the class declaration. If there are no package statements, then the import statement

should be the first line in the source file.

 Import and package statements will imply to all the classes present in the source file. It is not

possible to declare different import and/or package statements to different classes in the

source file.

Classes have several access levels and there are different types of classes; abstract classes, final

classes, etc. We will be explaining about all these in the access modifiers chapter.

Apart from the above mentioned types of classes, Java also has some special classes called Inner

classes and Anonymous classes.

Java Package

In simple words, it is a way of categorizing the classes and interfaces. When developing

applications in Java, hundreds of classes and interfaces will be written, therefore categorizing these

classes is a must as well as makes life much easier.

Import Statements

In Java if a fully qualified name, which includes the package and the class name is given, then the

compiler can easily locate the source code or classes. Import statement is a way of giving the

proper location for the compiler to find that particular class.

For example, the following line would ask the compiler to load all the classes available in directory

java_installation/java/io −

import java.io.*;

A Simple Case Study

For our case study, we will be creating two classes. They are Employee and EmployeeTest.

First open notepad and add the following code. Remember this is the Employee class and the class

is a public class. Now, save this source file with the name Employee.java.

The Employee class has four instance variables - name, age, designation and salary. The class has

one explicitly defined constructor, which takes a parameter.

Example

import java.io.*;

public class Employee {

 String name;

 int age;

 String designation;

 double salary;

 // This is the constructor of the class Employee

 public Employee(String name) {

 this.name = name;

 }

 // Assign the age of the Employee to the variable age.

 public void empAge(int empAge) {

 age = empAge;

 }

 /* Assign the designation to the variable designation.*/

 public void empDesignation(String empDesig) {

 designation = empDesig;

 }

 /* Assign the salary to the variable salary.*/

 public void empSalary(double empSalary) {

 salary = empSalary;

 }

 /* Print the Employee details */

 public void printEmployee() {

 System.out.println("Name:"+ name);

 System.out.println("Age:" + age);

 System.out.println("Designation:" + designation);

 System.out.println("Salary:" + salary);

 }

}

As mentioned previously in this tutorial, processing starts from the main method. Therefore, in

order for us to run this Employee class there should be a main method and objects should be

created. We will be creating a separate class for these tasks.

Following is the EmployeeTest class, which creates two instances of the class Employee and

invokes the methods for each object to assign values for each variable.

Save the following code in EmployeeTest.java file.

import java.io.*;

public class EmployeeTest {

 public static void main(String args[]) {

 /* Create two objects using constructor */

 Employee empOne = new Employee("James Smith");

 Employee empTwo = new Employee("Mary Anne");

 // Invoking methods for each object created

 empOne.empAge(26);

 empOne.empDesignation("Senior Software Engineer");

 empOne.empSalary(1000);

 empOne.printEmployee();

 empTwo.empAge(21);

 empTwo.empDesignation("Software Engineer");

 empTwo.empSalary(500);

 empTwo.printEmployee();

 }

}

Now, compile both the classes and then run EmployeeTest to see the result as follows −

Output

C:\> javac Employee.java

C:\> javac EmployeeTest.java

C:\> java EmployeeTest

Name:James Smith

Age:26

Designation:Senior Software Engineer

Salary:1000.0

Name:Mary Anne

Age:21

Designation:Software Engineer

Salary:500.0

